do you still have doubts ?
clearly, understood, thx.
***
Another option to try your luck.
288230376151711744-576460752303423488 our range.
success formula.
144115188075855872 - ((((((((((1,9850114 * 128) * 128) * 128) * 128) * 128) * 128) * 128) * 128) - 142989288169013248) * 128) = ~138245434111601493 - 138245758910846492 = 324799244999 < scan residue
288230376151711744 - ((((((((((3,9783185 * 128) * 128) * 128) * 128) * 128) * 128) * 128) * 128) - 285978576338026496) * 128) = ~199976540817066822 - 199976667976342049 = 127159275227 < scan residue
576460752303423488 - ((((((((((7,9456789 * 128) * 128) * 128) * 128) * 128) * 128) * 128) * 128) - 571957152676052992) * 128) =
63
101 3,9783185 2
111 1,9850114 4
56 sec 49 sec 42 sec
100 127,38634167733380354869954231845 1 101 127,27325883491753266696377977496 2 101 127,34166804622168456262443214655 1
110 63,583036446150909604124734642028 3 101 63,660348182749885381781496107578 1 101 63,668431836413219571113586425781 1
100 31,861576626618332619411688710898 0 110 31,787429311634468831471167504787 3 111 31,771796089393319562077522277832 4
110 15,90613502904471082688431238239 2 101 15,908679856821891007712110877037 2 100 15,926393464003922417759895324707 0
111 7,941484368221046585833988729064 4 100 7,9644791460323176579549908638 0 100 7,966582541557727381587028503418 0
111 3,97142883352349745 4 111 3,9726356460934955094899123650976 4 101 3,9699310258729383349418640136719 2
100 1,9915187218734213270288080366299 0 110 1,9868375314665325248597582685761 3 100 1,990362136945805104915052652359 1
35 28 21
100 127,41463838936761021614074707031 0 110 127,1519957482814788818359375 3 110 127,1361083984375
110 63,588673464953899383544921875 3 110 63,58295440673828125 3 110 63,58837890625
110 31,7922732196748256683349609375 3 110 31,7968273162841796875 3 101 31,82952880859375
101 15,90996809303760528564453125 2 111 15,876374721527099609375 5 110 15,9052734375
111 7,938812442123889923095703125 4 110 7,9462490081787109375 3 101 7,954345703125
111 3,979142837226390838623046875 4 101 3,97543811798095703125 110 3,97543811798095703125
101 1,9883378362865187227725982666016 2 101 1,9887961782515048980712890625 110 1,987188816070556640625
binary representations of the first 7 digits, after the comma. 1,9...3,9...7,9...15,9... (15.blabla - 127.blabla We are not taking yet.) And we look at coincidences.
63
10010101 01000111 10010001 (3,9783185 > 9783185 > 100101010100011110010001)
10010110 01001101 00000010 (1,9850114 > 9850114 > 100101100100110100000010)
56
10001010 01000011 11100110
10001010 10100111 01001110 10001101 01011011 00111110
10001111 10101000 10111011
10010011 00101010 11110111
10010011 01111101 00100001
10010100 00111010 01110000
10010100 01101001 10010100
10010011 11111111 11101110
10010111 01001011 00110011
10010110 10010100 01010111
10010111 00011110 00000101
10001010 11011001 10100000 10000101 10111001 01100011
10001010 00100010 00111110
10001111 01000000 01011100
10010000 01100010 11011010
10010001 10011111 00100001
10010101 01100111 11000100
10010100 11010111 00001101
10010100 11010111 00001101
10010110 11001110 11110010
10010110 11100000 11011001
10010110 10100010 00010000
Let's say we have a repeat 10001111 we get an approximate range 510000000000000000-550000000000000000. At 10010011 290000000000000000-340000000000000000.
with clarification, on all possible ranges.
10001111 553000000000000000-580000000000000000 if after 9 comes 3 > 7,9
3... too high
10001111 519000000000000000-554000000000000000 if after 9 comes 4 > 7,9
4...
10010000 460000000000000001-520000000000000000 if after 9 comes 4 > 7,9
4...
10010000 458000000000000000-462000000000000000 if after 9 comes 5 > 7,9
5...
10010001 390000000000000000-460000000000000000 if after 9 comes 5 > 7,9
5...
10010010 369000000000000000-400000000000000000 if after 9 comes 5 > 7,9
5... did not appear yet
10010010 337000000000000000-369000000000000000 if after 9 comes 6 > 7,9
6... did not appear yet
10010011 270000000000000000-338000000000000000 if after 9 comes 6 > 7,9
6... too low
if after 9 comes 7,9 012...789 fall out of range, 012 > 576460752303423488,789 < 288230376151711744. As we see 10010010 have not participated anywhere yet (unless on initial puzzles).
Most likely range from 10010001 390000000000000000 to 10001111 554000000000000000. 390000000000000000-554000000000000000.
***
python 3 script
from bitcoin import *
import random
import subprocess
import time
from decimal import *
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())
l1= [("10001111"),("10010000"),("10010001")]
l2= [("10000000"),("10000001"),("10000010"),("10000011"),("10000100"),("10000101"),("10000110"),("10000111"),
("10001000"),("10001001"),("10001010"),("10001011"),("10001100"),("10001101"),("10001110"),("10001111"),
("10010000"),("10010001"),("10010010"),("10010011"),("10010100"),("10010101"),("10010110"),("10010111"),
("10011000"),("10011001"),("10011010"),("10011011"),("10011100"),("10011101"),("10011110"),("10011111"),
("10100000"),("10100001"),("10100010"),("10100011"),("10100100"),("10100101"),("10100110"),("10100111"),
("10101000"),("10101001"),("10101010"),("10101011"),("10101100"),("10101101"),("10101110"),("10101111"),
("10110000"),("10110001"),("10110010"),("10110011"),("10110100"),("10110101"),("10110110"),("10110111"),
("10111000"),("10111001"),("10111010"),("10111011"),("10111100"),("10111101"),("10111110"),("10111111"),
("11000000"),("11000001"),("11000010"),("11000011"),("11000100"),("11000101"),("11000110"),("11000111"),
("11001000"),("11001001"),("11001010"),("11001011"),("11001100"),("11001101"),("11001110"),("11001111"),
("11010000"),("11010001"),("11010010"),("11010011"),("11010100"),("11010101"),("11010110"),("11010111"),
("11011000"),("11011001"),("11011010"),("11011011"),("11011100"),("11011101"),("11011110"),("11011111"),
("11100000"),("11100001"),("11100010"),("11100011"),("11100100"),("11100101"),("11100110"),("11100111"),
("11101000"),("11101001"),("11101010"),("11101011"),("11101100"),("11101101"),("11101110"),("11101111"),
("11110000"),("11110001"),("11110010"),("11110011"),("11110100"),("11110101"),("11110110"),("11110111"),
("11111000"),("11111001"),("11111010"),("11111011"),("11111100"),("11111101"),("11111110"),("11111111"),
("00000000"),("00000001"),("00000010"),("00000011"),("00000100"),("00000101"),("00000110"),("00000111"),
("00001000"),("00001001"),("00001010"),("00001011"),("00001100"),("00001101"),("00001110"),("00001111"),
("00010000"),("00010001"),("00010010"),("00010011"),("00010100"),("00010101"),("00010110"),("00010111"),
("00011000"),("00011001"),("00011010"),("00011011"),("00011100"),("00011101"),("00011110"),("00011111"),
("00100000"),("00100001"),("00100010"),("00100011"),("00100100"),("00100101"),("00100110"),("00100111"),
("00101000"),("00101001"),("00101010"),("00101011"),("00101100"),("00101101"),("00101110"),("00101111"),
("00110000"),("00110001"),("00110010"),("00110011"),("00110100"),("00110101"),("00110110"),("00110111"),
("00111000"),("00111001"),("00111010"),("00111011"),("00111100"),("00111101"),("00111110"),("00111111"),
("01000000"),("01000001"),("01000010"),("01000011"),("01000100"),("01000101"),("01000110"),("01000111"),
("01001000"),("01001001"),("01001010"),("01001011"),("01001100"),("01001101"),("01001110"),("01001111"),
("01010000"),("01010001"),("01010010"),("01010011"),("01010100"),("01010101"),("01010110"),("01010111"),
("01011000"),("01011001"),("01011010"),("01011011"),("01011100"),("01011101"),("01011110"),("01011111"),
("01100000"),("01100001"),("01100010"),("01100011"),("01100100"),("01100101"),("01100110"),("01100111"),
("01101000"),("01101001"),("01101010"),("01101011"),("01101100"),("01101101"),("01101110"),("01101111"),
("01110000"),("01110001"),("01110010"),("01110011"),("01110100"),("01110101"),("01110110"),("01110111"),
("01111000"),("01111001"),("01111010"),("01111011"),("01111100"),("01111101"),("01111110"),("01111111")]
def ran1():
nnn1 = str(random.choice(l1))
return nnn1
def ran2():
nnn2 = str(random.choice(l2))
return nnn2
while 1 == 1:
i = 1
while i <= 100000:
a = str("7.")
bina = (ran1()+ran2()+ran2())
nuli = bina.count("0")
if nuli != 100:
comb1 = int(bina,2)
if comb1 >= 9400000:
if comb1 <= 9680000:
deccomb1 = str(comb1)
comb2 = Decimal(a+deccomb1)
deccomb2 = int(576460752303423488 - ((((((((((comb2 * 128) * 128) * 128) * 128) * 128) * 128) * 128) * 128) - 571957152676052992) * 128))
if deccomb2 >= 390000000000000000:
if deccomb2 <= 554000000000000000:
ran = deccomb2
myhex = "%064x" % ran
myhex = myhex[:64]
priv = myhex
pub = privtopub(priv)
pubkey1 = encode_pubkey(privtopub(priv), "bin_compressed")
addr = pubtoaddr(pubkey1)
oy = """cd "C:\crackbit" """
ey = "\nstart /min cuBitCrack.exe -d 0 -i addr.txt -o find.txt -c -b 32 -t 256 -p 512 -s " # bitcrack settings
f=open("C:/testpy.cmd","w")
f.write (oy)
f.write (ey)
f.write (priv)
f.close()
subprocess.Popen([r"C:/testpy.cmd"])
print(bina,nuli,comb1,deccomb1,comb2,deccomb2,bin(deccomb2)[2:])
time.sleep(0.1)
time.sleep(1200.0) # break between restarts, scan time, in sec, 1200 sec > 20 min.
subprocess.call("taskkill /IM cuBitCrack.exe")
i = i+1
pass
[/size]