Indeed, the total economic collapse of 2032 could be the emergence of shared global consciousness which renders all notion of an economy obsolete.
It's hilarious that we may indeed become the wealthiest humans in history just as all notions of wealth cease to mean anything.
Perhaps! Are you familiar with the Transcencion Hypothesis by John Smart? He speculates that this Singularity or Infinity Point is only the first of many such paradigm shifts. It could be that what we see an an economic collapse is actually a vision of world currencies falling to zero while crypto begins it's true journey into price discovery.
From:
http://brighterbrains.org/articles/entry/the-transcension-hypothesis-an-intriguing-answer-to-the-fermi-paradox"It is these developmental processes in biology that govern cycles of birth, growth, maturation, reproduction, senescence and death that Smart seeks to apply to the possible development of the universe as a system. If the universe can be described as existing within a life cycle, then it becomes feasible to ask which aspects of the observable universe are attributable to evolutionary processes and which to developmental ones. If quantum mechanics, chaos, non-linear dynamics can be described as fundamentally creative and unpredictable then the laws of classical mechanics, conservation and entropy can adversely be seen as conservative and predictable.
It is Smart’s contention furthermore that if we could witness the evolutionary development of two parametrically identical universes from birth to death we would expect to see huge differences in terms of the creation of internal structure, the evolution of life, emergence of intelligence and the application of technology within such civilisations whilst at the same time observing deep commonalities in terms of historic processes, as well as biological, cultural and technological convergence. Species convergence in the sense of a non-identical, dynamic progression towards universal milestones is of critical importance to Smart’s next suggestion; rather than advanced civilisations seeding the galaxy in a process of expansion, evolutionary development guides intelligent life increasingly into inner space and what is referred to as STEM, small scales of space, time, energy and matter that eventually lead to black hole like domains.
The reversal of scale from the very large stellar engineering projects predicated on the expansionist model to the very small atomic and subatomic realms offered by the transcension model would certainly explain why no evidence so far exists of galactic intelligence despite the relative lateness of humanity’s arrival on the scene, particularly as the universe seems to many cosmologists as a life friendly environment. But what evidence is there that transcension is a feasible developmental trend?"
Here Smart turns to the history of structural complexity and argues that much in the same way that cosmological superclusters gave birth to the first galaxies, which in turn created the first stars that lead to stellar habitable zones, the evolution of planetary life and the emergence of localised human cultures, so to do human societies develop increasing specialisation, the construction of industrial cities which have become the leading edges of our civilisation, one that now stands on the brink of creating localised self aware technology. This great leap downwards will represent a further order of connectivity and miniaturisation as intelligent computers will have access to micro-realms and nano-computational domains currently beyond present technology. While expansions do occur such as the colonisation of the land by marine life or the future colonisation of the solar system by robots, Smart maintains that these events are limited, temporary phenomena compared to the predominant trend of increasing locality of the spatial domain within complex systems.
According to the hypothesis, the reasons for this trend are fairly simple; compression and energy rate density (energy flow per unit mass or volume) leads to increasing efficiency and computational capability:
‘Energy efficiency acceleration has also been shown to be smoothly logarithmic for at least the last few hundred years, across a broad variety of lighting, power, computation, and communications technologies and nanotechnologies. Note also that the higher the energy flow density of any system, the closer the system approaches the universal density limit—a black hole.’
Following this train of thought the growth in computational capability as measured by information creation, processing speed and connectivity, would appear to progress exponentially at the leading edge of complex systems with each medium being replaced by more STEM efficient substrates. The idea of accelerating complexity as a universal developmental process will not be new to anyone familiar with the concept of a technological singularity. But where transcension is unique is that it offers a framework by which people can examine the possibility within the context of an, at least partly, predictable cycle.
Rejecting the Kardashev scale as a meaningful measure for civilisation Smart goes on to support John D. Barrow’s scale of particle manipulation as a more appropriate indicator. In the Barrow scale a civilisation is assessed based on the spatial localisation of their engineering; the ability to miniaturise increasingly dense, efficient and complex structures down to Planck-scale limits. STEM compression rather than energy consumption becomes the key factor in judging the level of development, from the manipulation of genes and molecules down to the level of elementary particles and the fabric of space time itself. That seemingly magical capability may in fact be closer to reality than people imagine. For the human species it is estimated that if Moore’s law continues to hold, within 600 years a physical limit to computational acceleration will have been reached, leaving only one remaining domain to utilise. The energy dense environment of a black hole."