Pages:
Author

Topic: [ANN] OpenBitASIC : The Open Source Bitcoin ASIC Initiative - page 10. (Read 50782 times)

sr. member
Activity: 266
Merit: 251
I have been working with the FPGA designs by fpgaminer and ztex for some time now.  For a while, I was interested in seeing what might be possible with the relatively inexpensive Cyclove V which was recently released by Altera (looks like it might edge out the Xilinx LX150, but nothing definitive yet).  But even if it does wind up beating the LX150, it will still fall significantly short of the mark set by Butterfly Labs, so it's hard to become too excited by the idea.

Not exactly. It is just extremely complex work to get LX150 to make it nice. And other thing is extremely complex to deal with FPGA vendors when have unstable demand. Building several racks already enables to make better deals by just showing them how this thing may look like. Because these single-board sales does not impress much.

Obviously, a much larger leap is possible going to a full ASIC design, and it sounds like that may already be in the works based on what others here have said.  However, undertaking a full custom ASIC design not only takes a fair bit of cash, but it is also fairly time consuming compared to alternatives.  In the world of bitcoin, things can change very quickly so I can't see investing my money in a project which would have a payoff more than around 6 months out.

Obviously. But Altera Hardcopy-based design would still have gap against same size chip, but with custom-designed ASIC. I've even mentioned in one topic how this should be done.


I took a slightly modified version of code originally developed by fpgaminer and subsequently enhanced by makomk.  First, I built it for a Stratix IV device, and then for the corresponding Hardcopy IV device -- the HC4E35FF1152 which has the largest number of H-Cells of any Hardcopy IV device.  Due to memory limitations of my build machine, I was not able to compile more than 2 full miners on the chip (each miner needs about 1.25GB of memory for synthesis, and I haven't yet upgraded my development machine with the needed ~48GB of virtual memory that would be required to compile a fully populated device.  However, some interesting extrapolations can be drawn from what I did do.

First of all, a single miner compiled for the HC4E35FF1152 uses 306,648 H-Cells, with no optimizations enabled.  Fmax is 316 MHz for the slow 85C model.  But wait -- the device has a total of 9,774,880 H-Cells on it.  So you could theoretically fit 31.9 miners it with no optimization.  Assuming it's possible (with optimization) to fit 30 miners on the device, and (with optimization) reach 300 MHz per miner, I get 9 GH/s hash rate.  Perhaps it would be more realistic to go with something like 25 miners on the device, though in that case it should be possible to get a slightly higher Fmax (say 325MHz).  That still gives over 8 GH/s.

I just took one of my versions optimized for altera devices (unrolled prototype, and optimizations are made this time for size, not for clock as with LX150) and got following performance (tried to lay it on chip):

Device EP4SE230...C3: fmax about 253 Mhz, number of unrolled miners - 4 - That's about 1 Gh/s (not tried in H/W)
Device EP4SE530...C3: fmax about 249 Mhz, number of unrolled miners - 8 - That's about 2 Gh/s per chip.
Device 5CGXB... C7: fmax about 163 Mhz, number of unrolled miners - 2 - That's about 326 Mh/s per chip.

Quartus optimizations does not matter much here however, as most reward is in logics layout within design. Still NEITHER OF THAT DESIGN VERIFIED IN HARDWARE. So one just can pray, that same performance due to extreme toggle rates will be in hardware. I expect that there will be clock degradation in Stratix IV chips and no degradation for Cyclone V because of consumed power. What's nice about CycloneV compared to LX150 for example is more than twice less power consumption, however performance is near the same. Design like with LX150 is unlikely to get there due to routing limitations as there's more wires for routing unrolled round, while less resources to enter LAB, and so it is unlikely to get dense packing there as could be done with LX150.

First tryout:

Device: HC4E25FF484 ; Slow 85C model - 321.34 Mhz clock;
Synthesis tool says: 208'723 H-Cells / 98'873 block memory bits
Fitter tool says: 371'641 H-Cells / 98'873 block memory bits.
So what's your quote was ? out of synthesis tool or of fitter tool ?

Then I've started counting by M9K blocks - and found that there's not enough of them - as only about 5 miners can be put into HC4E25FF484 that way. And I expect about 10 miners into 9M H-Cell chip. That's not good indeed, as M9K/H-cell balance is completely different!

Second tryout (making it less consuming M9Ks by switching hard-coded M9K altsyncram to altshift_taps):

Device: HC4E25FF484 ; Slow 85C model - 340 Mhz (but 362 Mhz if not counting m9k limits);
Synthesis tool say: 212'327 H-Cells / 27'778 block memory bits.
Fitter tool says: 382'488 H-Cells / 27'778 block memory bits.

Please note, that clock increased, this is due to improved density... With such thing I would say it would fit about
10 of such things into 5M chip and about 18 into 9M chip to stay safe with the clock and not packing it too dense.

Third tryout (removing M9K blocks completely, as it seems that it would be more dense with everything implemented in FF pairs).

Device: HC4E25FF484 ; Slow 85C model - 367 Mhz ;
Synthesis tool say: 277'929 H-Cells / 0 block memory bits;
Fitter tool says: 516'059 H-Cells / 0 block memory bits;

Looking at floor plan gives me clue that about 8 of these miners would fit into 5M chips and 14 into 9M chip without making tough problems. As you see, I am _lowering_ numbers significantly... Because if I even manage to squeeze things so hard, it could end up with clocks not like in tools, but like 200-220 Mhz...

So it will be likely about 6 Gh/s per single chip HC4E25FF484 with decent design, not 8 Gh/s. However that's without specific hardcopy-related optimizations... If spending additional 2-3 month on it - mine design could be improved to say 7-8 Gh/s potential, but not so much like on spartan6 indeed. For ztex or fpgaminer I suppose it would be less at about 4-5 Gh/s per such chip.

Then - I rise following question - if we say sign contract to buy Artix7 chips in quantities compared to ASIC development and production costs - would prices be SIGNIFICANTLY less ? Say like $30 per chip, while getting of about 0.5-0.6 Gh/s ? Then if so - what's the point to go into ASIC ? This is even less than planned for ASIC...

With ASIC however that would be even easier to do, as this would proof to Xilinx that if someone invested $2M into ASIC building, then definitely there exists market and they would lower their FPGA prices to be competitive.... So from hardware design point of view ASIC blow offs, but looking from other - financial point of view - sASIC does not offers much benefits compared to FPGA internal prices to their vendors - so this game could end with epic failure. However this would be still nice investment and result for community overall, as Mh/s would be lower, but I would rather choose gradually slow step-by-step evolution as there's no need to hurry.

Do you really think that cost of silicon differs so much ? Actually what makes costs here is the IP, design, etc... Stratix IV and Cyclone V costs internal to Altera to build would have costs compared to their silicon die area... But they sell it at different prices because NRE costs very different for these chips, and they want to recover their R&D costs.

I would expect that the boards with an sASIC could be manufactured for around $1500 in reasonable quantities (500+), though this should only be taken as a ballpark figure as I have not yet been in contact with Altera to work out more exact costs of producing the sASICs.  I'm assuming they would cost on the order of $1000 each.  If fully populated/tested hardware were then sold for $2000 each, that would yield a minimum of 4 MH/$, which I think is better than anything else out there at the moment.

Everything I've written above is very preliminary.  I wanted to get a feel for the ballpark level of investment that would be required and the performance potential for a miner based on Altera Hardcopy.  If based on the above very tentative numbers, there is enough interest in pursuing this further, I would certainly be interested in playing a role.  If not, then I'll go back to playing with Cylcone IVs and Vs for the fun of it.

I would say that all of that extremely preliminary.... And I even doubt that until first payment to Altera goes, you would even know how tight chip could be filled... And even then with such toggle rates and sASIC (I suppose they design chip having 12.5-20% toggle rates in mind) there could be problems with logics powering, if you compact it too dense.
member
Activity: 73
Merit: 10
 Shocked  Eagerly waiting if GLBSE funding will be available! Interested!
legendary
Activity: 1274
Merit: 1004
@Json Is there a schematic for devs to talk about inprovements or alternatives, like on svn or something?

I'd like to see this as well.
hero member
Activity: 868
Merit: 1000
Very interesting & very interested !
legendary
Activity: 1099
Merit: 1000
@Json Is there a schematic for devs to talk about inprovements or alternatives, like on svn or something?

@gusti When will it be possible to pre order? maybe something like put down a part of the money for reservation and when its ready you pay the rest so you have a spot reserved. basicly like Tesla Motors did, but thats another story.

Once the design phase is completed, a working prototype will be built, for testing and demo.
With the prototype fine tuned and tested, just before it goes to manufacturer, pre-sales will be opened to reserve a device. This will happen in about 45-60 days from now.
full member
Activity: 141
Merit: 102
@Json Is there a schematic for devs to talk about inprovements or alternatives, like on svn or something?

@gusti When will it be possible to pre order? maybe something like put down a part of the money for reservation and when its ready you pay the rest so you have a spot reserved. basicly like Tesla Motors did, but thats another story.
donator
Activity: 743
Merit: 510
Well well very extremly intresting! Thanks Gusti for introducing me into this thread and proyect. Obviously you must know I can't make any tecnical sugestion at all, but you must consider me a possible investor! You could even PM your actual needs. I do believe this will be the way to go for real mining, and makes the bitcoin project even more ecologically friendly (good press) and will lower the exit point where miners stop mining, helping both, the entrance of more mining power and the exit if prices drops! It would be nice to start a list of benefits (for marketing, hahaha).
sr. member
Activity: 252
Merit: 250
Inactive
UPDATE

I'm very glad to inform you that we are official now.
OpenASICS Limited has finished registration as a Hong Kong Company, under number 1744006.
With Jason and me working side by side, being the only shareholders and management by now.

On the technical side, contact with Altera officials was initiated and proceeding.
HDL development continues:  abstraction layer being added to modified miner based on makomk's optimized version of fpgaminer's original miner.
Prototype/Proof-of-concept to be developed on a EP4SE530 (Stratix IV) FPGA.

Many thanks for all your support !



Great news.
donator
Activity: 919
Merit: 1000
Interested. Good Luck!
legendary
Activity: 1099
Merit: 1000
@rjk : not yet, but coming soon.

@Garr255 : sure, we are planning several funding options, being GLBSE one of them.
legendary
Activity: 938
Merit: 1000
What's a GPU?
UPDATE

I'm very glad to inform you that we are official now.
OpenASICS Limited has finished registration as a Hong Kong Company, under number 1744006.
With Jason and me working side by side, being the only shareholders and management by now.

On the technical side, contact with Altera officials was initiated and proceeding.
HDL development continues:  abstraction layer being added to modified miner based on makomk's optimized version of fpgaminer's original miner.
Prototype/Proof-of-concept to be developed on a EP4SE530 (Stratix IV) FPGA.

Many thanks for all your support !

Great! This would do very well on GLBSE if you're in need of some funds.
rjk
sr. member
Activity: 448
Merit: 250
1ngldh
UPDATE

I'm very glad to inform you that we are official now.
OpenASICS Limited has finished registration as a Hong Kong Company, under number 1744006.
With Jason and me working side by side, being the only shareholders and management by now.

On the technical side, contact with Altera officials was initiated and proceeding.
HDL development continues:  abstraction layer being added to modified miner based on makomk's optimized version of fpgaminer's original miner.
Prototype/Proof-of-concept to be developed on a EP4SE530 (Stratix IV) FPGA.

Many thanks for all your support !
Excellent. Is there a github repo somewhere?
legendary
Activity: 1099
Merit: 1000
UPDATE

I'm very glad to inform you that we are official now.
OpenASICS Limited has finished registration as a Hong Kong Company, under number 1744006.
With Jason and me working side by side, being the only shareholders and management by now.

On the technical side, contact with Altera officials was initiated and proceeding.
HDL development continues:  abstraction layer being added to modified miner based on makomk's optimized version of fpgaminer's original miner.
Prototype/Proof-of-concept to be developed on a EP4SE530 (Stratix IV) FPGA.

Many thanks for all your support !





sr. member
Activity: 278
Merit: 250

Your welcome if you have list anywhere put me on it I'll PM you my email address.

Being that far out, a mailing list or blog with monthly updates would really help keep interest high.  Sub'ing anyway. :-)
full member
Activity: 196
Merit: 100
So a 6GH/s device for $2,500 that uses less power than a FPGA  Grin  When does it look like the device might be ready to ship end of the year or next year?  Also where will the device be shipping from.  You might want to have an EU supplier so European customers don't get hit with >20% import taxes.

Estimated performance is 8GH/s over 100w or less, we will know exactly when prototype is ready.
We wish to be shipping by 4th quarter 2012, distributors will be appointed in USA, EU and ASIA.



Count on me if you're interested on distributing it on Latin America.

Since Canada is not mentioned there I would be interested in that as well.

Thanks for your interest. Once manufacturing is on the way, we will announce the opening of distributors agreements to interested parties.


Your welcome if you have list anywhere put me on it I'll PM you my email address.
legendary
Activity: 1099
Merit: 1000
So a 6GH/s device for $2,500 that uses less power than a FPGA  Grin  When does it look like the device might be ready to ship end of the year or next year?  Also where will the device be shipping from.  You might want to have an EU supplier so European customers don't get hit with >20% import taxes.

Estimated performance is 8GH/s over 100w or less, we will know exactly when prototype is ready.
We wish to be shipping by 4th quarter 2012, distributors will be appointed in USA, EU and ASIA.



Count on me if you're interested on distributing it on Latin America.

Since Canada is not mentioned there I would be interested in that as well.

Thanks for your interest. Once manufacturing is on the way, we will announce the opening of distributors agreements to interested parties.
full member
Activity: 196
Merit: 100
So a 6GH/s device for $2,500 that uses less power than a FPGA  Grin  When does it look like the device might be ready to ship end of the year or next year?  Also where will the device be shipping from.  You might want to have an EU supplier so European customers don't get hit with >20% import taxes.

Estimated performance is 8GH/s over 100w or less, we will know exactly when prototype is ready.
We wish to be shipping by 4th quarter 2012, distributors will be appointed in USA, EU and ASIA.



Count on me if you're interested on distributing it on Latin America.

Since Canada is not mentioned there I would be interested in that as well.
sr. member
Activity: 252
Merit: 250
Inactive
So a 6GH/s device for $2,500 that uses less power than a FPGA  Grin  When does it look like the device might be ready to ship end of the year or next year?  Also where will the device be shipping from.  You might want to have an EU supplier so European customers don't get hit with >20% import taxes.

Estimated performance is 8GH/s over 100w or less, we will know exactly when prototype is ready.
We wish to be shipping by 4th quarter 2012, distributors will be appointed in USA, EU and ASIA.




Yaaay.
sr. member
Activity: 325
Merit: 250
Our highest capital is the Confidence we build.
So a 6GH/s device for $2,500 that uses less power than a FPGA  Grin  When does it look like the device might be ready to ship end of the year or next year?  Also where will the device be shipping from.  You might want to have an EU supplier so European customers don't get hit with >20% import taxes.

Estimated performance is 8GH/s over 100w or less, we will know exactly when prototype is ready.
We wish to be shipping by 4th quarter 2012, distributors will be appointed in USA, EU and ASIA.



Count on me if you're interested on distributing it on Latin America.
legendary
Activity: 1372
Merit: 1003
So a 6GH/s device for $2,500 that uses less power than a FPGA  Grin  When does it look like the device might be ready to ship end of the year or next year?  Also where will the device be shipping from.  You might want to have an EU supplier so European customers don't get hit with >20% import taxes.

Estimated performance is 8GH/s over 100w or less, we will know exactly when prototype is ready.
We wish to be shipping by 4th quarter 2012, distributors will be appointed in USA, EU and ASIA.



Cool I'll keep a close eye on this thread then and will go about raising funds for a pre-order nearer the time.
Pages:
Jump to: