In the case of a hard vacuum aether will push on an object. Up and down are defined by the electric field between the dome and the ground.
Whats aether and what do you mean it will push on an object, does aether push objects at the same rate no matter their density?
Aether is essentially a superfine gas that can penetrate matter, it's made of individual N and S magnetic poles and is the medium that electromagnetic waves propagate through.
OH REALLY? You seem to really like made up shit and science fiction. The concept of aether was used in several theories to explain several natural phenomena, such as the traveling of light and gravity. In the late 19th century, physicists postulated that aether permeated all throughout space, providing a medium through which light could travel in a vacuum, but evidence for the presence of such a medium was not found in the Michelson–Morley experiment, and this result has been interpreted as meaning that no such luminiferous aether exists.
Yeah, I'm ignoring you from now on, keep believing your fairy tail.
Ignoramus?
The Sagnac experiment proves the existance of the aether. With the existance of the aether a proven fact the Michaelson & Morley experiment proves the Earth is motionless.
The Michelson–Morley experiment was performed over the spring and summer of 1887 by Albert A. Michelson and Edward W. Morley at what is now Case Western Reserve University in Cleveland, Ohio, and published in November of the same year.[1] It compared the speed of light in perpendicular directions, in an attempt to detect the relative motion of matter through the stationary luminiferous aether ("aether wind"). The result was negative, in that the expected difference between the speed of light in the direction of movement through the presumed aether, and the speed at right angles, was found not to exist; this result is generally considered to be the first strong evidence against the then-prevalent aether theory, and initiated a line of research that eventually led to special relativity, which rules out a stationary aether.
After all this thought and preparation, the experiment became what has been called the most famous failed experiment in history.[A 13] Instead of providing insight into the properties of the aether, Michelson and Morley's article in the American Journal of Science reported the measurement to be as small as one-fortieth of the expected displacement (Fig. 7), but "since the displacement is proportional to the square of the velocity" they concluded that the measured velocity was "probably less than one-sixth" of the expected velocity of the Earth's motion in orbit and "certainly less than one-fourth."[1] Although this small "velocity" was measured, it was considered far too small to be used as evidence of speed relative to the aether, and it was understood to be within the range of an experimental error that would allow the speed to actually be zero.[A 1] For instance, Michelson wrote about the "decidedly negative result" in a letter to Lord Rayleigh in August 1887:[A 14]
The Experiments on the relative motion of the earth and ether have been completed and the result decidedly negative. The expected deviation of the interference fringes from the zero should have been 0.40 of a fringe – the maximum displacement was 0.02 and the average much less than 0.01 – and then not in the right place. As displacement is proportional to squares of the relative velocities it follows that if the ether does slip past the relative velocity is less than one sixth of the earth’s velocity.
— Albert Abraham Michelson, 1887