Troll BS aside, here is some
realnew research:
First of all, I think there are several "keys" involved here.
011010 - Ribbons. Ribbons are cut and ordered, perhaps they indicate something will have to be cut and shuffled around.
011 - Bishop melting points. Melting points "melt away", perhaps indicating 011 will have to be removed.
11110 - Phoenix spikes. Connected via branch with the Dove or into a left/top leaf. Might indicate Dove connection or data insertion at leaf place.
1000 - Dove's "tails". Might indicate data insertion between the leaves or connection with 11110 bits from Phoenix.
Some legend:
H: Height flames bits, with 011 even bits REMOVED ("melted away"), not XORed out
I: Inner color bits
O: Outer color bits
Analysis:
Step #1 - Group 3 streams line by line, separate by 7, 6, and the remaining bits, notice the "011010" Ribbon "key" is after 7th bit in each stream:
H: 1011000 011010 111111011110000100011111111110101011011000011110000110010101010
I: 0111001 011010 1000011110001001000001001101111010010111111001100100011100111010101100001101111110001011011101000000000100111100000010110100100101101010111
O: 1110101 011010 0100011010011111111010001000111000011110101000111100011101000000010100011000010110011010110010011001110000111001111010001010011100010001101
Step #2 - Mark 1st and 7th bit:
H: (1)01100(0) 011010 111111011110000100011111111110101011011000011110000110010101010
I: (0)11100(1) 011010 1000011110001001000001001101111010010111111001100100011100111010101100001101111110001011011101000000000100111100000010110100100101101010111
O: (1)11010(1) 011010 0100011010011111111010001000111000011110101000111100011101000000010100011000010110011010110010011001110000111001111010001010011100010001101
Step #3 - Re-order the streams so 1st bit matches 011 pattern (wild guess):
I: (0)11100(1) 011010 1000011110001001000001001101111010010111111001100100011100111010101100001101111110001011011101000000000100111100000010110100100101101010111
O: (1)11010(1) 011010 0100011010011111111010001000111000011110101000111100011101000000010100011000010110011010110010011001110000111001111010001010011100010001101
H: (1)01100(0) 011010 111111011110000100011111111110101011011000011110000110010101010
Step #4 - Merge first 7 bits of each stream into one pattern:
Codec: (0)11100(1) + (1)11010(1) + (1)01100(0) => merge "connector" bits => (0)11100(1)11010(1)01100(0) => 0111001110101011000
Step #5 - Find that pattern:
[found here###############]
I: (0)11100(1) 011010 1000011110001001000001001101111010010111111001100100(0)11100(1)11010(1)01100(0)01101111110001011011101000000000100111100000010110100100101101010111
O: (1)11010(1) 011010 0100011010011111111010001000111000011110101000111100011101000000010100011000010110011010110010011001110000111001111010001010011100010001101
H: (1)01100(0) 011010 111111011110000100011111111110101011011000011110000110010101010
Mind blown? There's more...
Step #6 - Extend the pattern following the same logic, to see if there is anything extra there:
What if we extend it a little bit...
I: (0)11100(1) 011010 1000011110001001000001001101111010010111111001100100(0)11100(1)11010(1)01100(0)01101(1)11110(0)01011011101000000000100111100000010110100100101101010111
O: (1)11010(1) 011010 0100011010011111111010001000111000011110101000111100011101000000010100011000010110011010110010011001110000111001111010001010011100010001101
H: (1)01100(0) 011010 111111011110000100011111111110101011011000011110000110010101010
Ribbon key discovered: (0)xxxxx(1)xxxxx(1)xxxxx(0)xxxxx(1)xxxxx(0)xxxxx
Even more? There seems to be a reversed version of the key too: 010110:
I: (0)11100(1) 011010 1000(0)11110(0)01001(0)00001(0)01101(1)11010(0)10111(1)11001(1)00100(0)11100(1)11010(1)01100(0)01101(1)11110(0)01011011101000000000100111100000010110100100101101010111
making it 010110+011010, mirror? But with different data inside, like in Wonderland?
Step #7 - Guesswork#1:
(0)11100(1) 011010 10000111...
(1)11010(1) 011010 01000110...
(1)01100(0) 011010 11111101...
(0)01101(1) missing
(1)11110(0) missing
(0)01011(0) missing
Step #8 - Guesswork#2:
(0)01101(1) search for 0011011 -- found but without 011010 next to it...
(1)11110(0) search for 1111100 -- found but without 011010 next to it...
(0)01011(0) search for 0010110 -- found, WITH 011010 next to it!!! On the "O" stream:
O: (1)11010(1) 011010 010001101001111111101000100011100001111010100011110001110100000001010001100(0)01011(0)011010 110010011001110000111001111010001010011100010001101
Step #9 - Guesswork#3:
(0)11100(1) 011010 10000111...
(1)11010(1) 011010 01000110...
(1)01100(0) 011010 11111101...
(0)01101(1) missing
(1)11110(0) missing
(0)01011(0) 011010 11001001...
Now, last 3 steps I marked as "guesswork" as these might be purely coincidental. Chances for re-occurrence of the 3 patterns I was looking for, followed by 011010 in a random stream of (152-13) bits is around 0.2%, so coincidence is not probable but is not "impossible".
Step #10 - Internal patterns
There are two interesting internal patterns:
1) 1000011110 - exists in all 3 streams. Could be very likely a combination of Dove's tail bits and Phoenix spikes (1000 + 0? + 11110).
2) 0111010000000 - exists in the longer streams. Interestingly, if you remove the "codec line", then this pattern occurs at the same location in the "left-over" bits. Extra note, the "10000000" is 80 in hex, and happens twice, 2nd location could be interpreted as "00000001", making both re-occurrences useful for WIF key.
I: (0)11100(1) 011010 1000011110 001001000001001101111010010111111001100100 (0) 11100 (1) 11010 (1) 01100 (0) 01101 (1) 11110 (0) 01011 0111010000000 0010011110000001011010010 0101101010111
---------- -------------
O1: (1)11010(1) 011010 010001101001111111101000100011 1000011110 101000111100 0111010000000 1010001100
---------- -------------
H: (1)01100(0) 011010 11111101111000010001111111111010101101 1000011110 000110010101010
----------
O2: (0)01011(0) 011010 110010011001110000111001111010001010011100010001101
With "codec" removed:
I: (0)11100(1) 011010 1000011110 001001000001001101111010010111111001100100 0111010000000 0010011110000001011010010 0101101010111
---------- -------------
O1: (1)11010(1) 011010 010001101001111111101000100011 1000011110 101000111100 0111010000000 1010001100
---------- -------------
H: (1)01100(0) 011010 11111101111000010001111111111010101101 1000011110 000110010101010
----------
O2: (0)01011(0) 011010 110010011001110000111001111010001010011100010001101
Now, the remaining data can be cut/shuffled around, codec part can be removed or the first 7bits removed instead (cause in real data there should be no duplicates). All of that makes SH1TTONS of possibilities of getting 304, 296 or 256bits. In fact, about 5-60 billion.
Let's face it, the authors underestimated difficulty of making a hard & solvable puzzle. Like OnTheMF said once, it's hard to make a puzzle that is complicated&solvable, but easy to make a complicated&unsolvable one. This is the latter case I'm afraid.
The authors simply did not consider the other "view points" on the data they presented us with. To them, it might look like a straight forward case A->B->C, while in reality its more like a tree, or better, a forest, where each tree has million branches. Each one logarithmically increasing possible&probable ways of solving it. IMHO, The Authors should come forward and give some solid clue or at least "burn" the bad leads. Until then, it's a waste of time & I'm out.