Cause and effect can be seen as operation in a space, their actual effect and the logic built on them depend on the nature of space itself, it's what riemann demonstrate
It's funny that you try to take on newton thermodynamics which is for me one of the worst system to understand god
Liebniz or riemann > newton
When getting into the Riemann habilitation theory , it's easy to see all newtonian physics based on euclidian space is actually a sort of mirage
https://www.schillerinstitute.org/fid_91-96/963A_lieb_rieman.htmlBriefly, the significance of Riemann's discovery, is this. Consider the form of algebra introduced to the Seventeenth century by the founder of the "Enlightenment," the atheistic Servite monk, and follower of William of Ockham, Paolo Sarpi. Consider the expression of this in the work of such Sarpi lackeys and followers as Galileo Galilei, Thomas Hobbes, and René Descartes. The proximate source of the Enlightenment forms of algebra, employed by René Descartes, Isaac Newton, and their devotees, is derived from an "Ockhamite" reading of what is most widely recognizable as that modern classroom parody of Euclid's geometry embedded in the mathematics curricula generally, as presented, still, in secondary and higher education during the time of this writer's youth, and earlier.
The fallacies of this algebra, are the starting point of Riemann's dissertation. His point of departure there, is that in the form of algebra derived hereditarily from the work of Galileo, Descartes, Newton, et al.: Discrete events, and their associated movements, are situated within a Cartesian form of idealized space-time. This point has been presented by the present author in numerous earlier locations, but, on pedagogical grounds, it must be stated again here, this time in a choice of setting appropriate to the connection we are exposing, between the ideas of Riemann and his predecessor Leibniz.
Riemann opens his dissertation, with two prefatory observations. First, that, until that time (1854), "from Euclid through Legendre," it was generally presumed that geometry, as well as the principles for constructions in space, was premised upon a priori axiomatic assumptions, whose origins, mutual relations, and justification remained obscure. The second general point of his plan of investigation, which he restates in the conclusion of the dissertation, is that no rational construction of the principles of geometry could be derived from purely mathematical considerations, but only from experience.9 He concludes his dissertation: "We enter the realm of another science, the domain of physics, which the subject of today's occasion [mathematics] does not permit us to enter." Riemann, thus, refutes the presumption on which a Newton devotee, of Prussia's Frederick II, Leonhard Euler, depended absolutely, for the entirety of his attack on Leibniz's Monadology.10
On grounds of the principles of Classical humanist, or cognitive pedagogy,11 the prudent course of action, now, is to reconstruct the conceptions at issue from the initial standpoint of simple, deductive theorem-lattices. This pedagogical approach leads us by the most direct route, to the central issue of Riemann's discovery: the validation of an axiomatic-revolutionary quality of discovery of universal principle, by reason of which we are obliged to construct a new mathematical physics, to supersede that erroneous one previously in vogue. Later, continuing that process of construction, to the point of examining the writer's own original discovery in physical-economy, we identify the cognizable feature of the individual person's mental life, in which we may then locate the significance of Riemann's revolution in mathematical physics.